MTH 408/522: Numerical analysis

Homework I: Bisection and Fixed-point iteration methods

(Due 02/09/19)

Problems for turning in

Bisection method

1. Show that the order of convergence of the Bisection method is sublinear.
2. Find a bound on the number of iterations needed to achieve an approximation with 10^{-3} to the solution of $x^{3}+x-4=0$ lying in the interval $[1,4]$.
3. Let $f(x)=(x-1)^{10}, p=1$, and $p_{n}=1+1 / n$. Show that $\left|f\left(p_{n}\right)\right|<10^{-3}$, whenever $n>1$, but that $\left|p-p_{n}\right|<10^{-3}$ requires that $n>1000$.

Fixed-point iteration method

4. Consider $g(x)=2 x-A x^{2}$, where $A>0$.
(a) Show that if the sequence $\left\{p_{n}\right\}$ generated by g converges, then $p_{n} \rightarrow 1 / A$.
(b) Find an interval about $1 / A$ for which p_{n} converges.
5. Suppose that g is a continuously differentiable function on some interval (c, d) that contain the fixed point of g. Show that if $\left|g^{\prime}(p)\right|<1$, then there exists $\delta>0$ such that if $\left|p_{0}-p\right| \leq \delta$, then $\left\{p_{n}\right\}$ generated by g converges.
6. Show that if $A>0$, then the sequence defined by

$$
x_{n}=\frac{1}{2} x_{n-1}+\frac{A}{2 x_{n-1}} \text {, for } n \geq 1 \text {, }
$$

converges to \sqrt{A}, whenever $x_{0}>0$. What happens if $x_{0}<0$?

Problems for practice

1. In each of the following, use the Bisection method to find solutions to the equation $f(x)=0$ in the interval $[a, b]$ accurate to within $A C C$.
(a) $f(x)=x^{2}-4 x+4-\ln (x) ;[a, b]=[2,4] ; A C C=10^{-5}$.
(b) $f(x)=x+1-2 \sin (\pi x) ;[a, b]=[0,0.5] ; A C C=10^{-5}$.
(c) $f(x)=x^{3}-7 x^{2}+14 x-6 ;[a, b]=[3.2,4] ; A C C=10^{-2}$.
(d) $f(x)=e^{x}-x^{2}+3 x-2 ;[a, b]=[0,1] ; A C C=10^{-2}$.
(e) $f(x)=e^{x}-\cos \left(e^{x}-2\right)-2 ;[a, b]=[0.5,1.5] ; A C C=10^{-2}$.
2. In each of the following, use the Fixed-point Iteration method to find solutions to the equation $f(x)=x$ accurate to within $A C C$ in the interval $[a, b]$ (or after determining a suitable interval $[a, b]$ in which a root exists).
(a) $f(x)=6^{-x} ; A C C=10^{-5}$.
(b) $f(x)=\left(e^{x} / 3\right)^{1 / 2} ; A C C=10^{-5}$.
(c) $f(x)=x^{3}-2 x-5 ;[a, b]=[2,3] ; A C C=10^{-2}$.
(d) $f(x)=x^{2}+10 \cos (x) ; A C C=10^{-4}$.
(e) $f(x)=3 x^{2}-e^{x} ; A C C=10^{-2}$.
