MTH 408/522: Numerical analysis

Homework I: Bisection and Fixed-point iteration methods

(Due 02/09/19)

Problems for turning in

Bisection method

- 1. Show that the order of convergence of the Bisection method is sublinear.
- 2. Find a bound on the number of iterations needed to achieve an approximation with 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4].
- 3. Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + 1/n$. Show that $|f(p_n)| < 10^{-3}$, whenever n > 1, but that $|p p_n| < 10^{-3}$ requires that n > 1000.

Fixed-point iteration method

- 4. Consider $g(x) = 2x Ax^2$, where A > 0.
 - (a) Show that if the sequence $\{p_n\}$ generated by g converges, then $p_n \to 1/A$.
 - (b) Find an interval about 1/A for which p_n converges.
- 5. Suppose that g is a continuously differentiable function on some interval (c, d) that contain the fixed point of g. Show that if |g'(p)| < 1, then there exists $\delta > 0$ such that if $|p_0 - p| \le \delta$, then $\{p_n\}$ generated by g converges.
- 6. Show that if A > 0, then the sequence defined by

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \text{ for } n \ge 1,$$

converges to \sqrt{A} , whenever $x_0 > 0$. What happens if $x_0 < 0$?

Problems for practice

- 1. In each of the following, use the Bisection method to find solutions to the equation f(x) = 0 in the interval [a, b] accurate to within ACC.
 - (a) $f(x) = x^2 4x + 4 \ln(x); [a, b] = [2, 4]; ACC = 10^{-5}.$
 - (b) $f(x) = x + 1 2\sin(\pi x); [a, b] = [0, 0.5]; ACC = 10^{-5}.$
 - (c) $f(x) = x^3 7x^2 + 14x 6$; [a, b] = [3.2, 4]; $ACC = 10^{-2}$.
 - (d) $f(x) = e^x x^2 + 3x 2; [a, b] = [0, 1]; ACC = 10^{-2}.$
 - (e) $f(x) = e^x \cos(e^x 2) 2; [a, b] = [0.5, 1.5]; ACC = 10^{-2}.$
- 2. In each of the following, use the Fixed-point Iteration method to find solutions to the equation f(x) = x accurate to within ACC in the interval [a, b] (or after determining a suitable interval [a, b] in which a root exists).
 - (a) $f(x) = 6^{-x}$; $ACC = 10^{-5}$.
 - (b) $f(x) = (e^x/3)^{1/2}$; $ACC = 10^{-5}$.

(c)
$$f(x) = x^3 - 2x - 5$$
; $[a, b] = [2, 3]$; $ACC = 10^{-2}$.
(d) $f(x) = x^2 + 10\cos(x)$; $ACC = 10^{-4}$.
(e) $f(x) = 3x^2 - e^x$; $ACC = 10^{-2}$.